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X-ray standing wave as a result of only the imaginary part of the atomic scattering factor
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Abstract

The X-ray standing wave has been studied when the real
part of the scattering factor is zero. In the symmetric
Laue case, the phase of the standing wave advances by �
when the deviation parameter W changes from ÿ1 to 1,
which is the same variation as in the usual symmetric
Bragg case when only the real part of the scattering
factor exists. However, the phase in the former case is
different from that in the latter by �=2. By using the
standing waves, the origins of the anomalous transmis-
sion and anomalous absorption effects reported by
Fukamachi & Kawamura [Acta Cryst. (1993), A49,
384±388] have been analysed. The standing wave in the
Laue case can give rise to a more accurate method of site
determination of a speci®ed impurity atom as well as
a wider range of applications than a conventional
standing-wave approach.

1. Introduction

The use of X-rays from synchrotron radiation makes it
possible to study dynamical diffraction due to anom-
alous scattering by changing the X-ray energy very near
the absorption edge of an atom in a crystal. For example,
Fukamachi et al. (1993) have observed X-ray dynamical
diffraction resulting from only the imaginary part of the
Fourier component of the X-ray polarizability (�hi), i.e.
when the real part (�hr) is zero, by measuring the 844
re¯ection of Ge using synchrotron X-rays at the Photon
Factory (KEK-PF). Fukamachi & Kawamura (1993)
have rewritten dynamical diffraction intensities in order
to treat such an extreme case. They have pointed out
several interesting effects expected for dynamical
diffraction very near an absorption edge: in the Laue
case, for example, the Borrmann effect is expected to be
conspicuous, and, in the Bragg case, the rocking curve
becomes quite sharp. The latter effect was also pointed
out by Kato (1992). Fukamachi et al. (1994) have studied
rocking curves in the Laue case for large �hi and pointed
out a non-transparent effect for a thin crystal as well as
enhanced anomalous transmission in an asymmetric
re¯ection when �hr � 0.

Recently, Fukamachi et al. (1995) studied dispersion
surfaces based on a theory by Fukamachi & Kawamura
(1993) and pointed out that the dispersion surface for

�hr � 0 is quite different from that for �0i � 0. They
have also shown that the cause of anomalous transmis-
sion as well as anomalous absorption in the Laue case
for �hr � 0 is understood intuitively by using the
dispersion surface. The cause of the sharpened rocking
curve in the Bragg case for �hr � 0, which was pointed
out by Fukamachi & Kawamura (1993), is also under-
stood by looking at the shape of the dispersion surface.

In this paper, we analyse the forms of the standing
waves in a crystal for �hr � 0, which are made up by the
transmitted and the diffracted components of the waves
in the crystal. The relation of anomalous absorption and
transmission to the standing waves is also prescribed.

2. Some basic equations

In this section, we will give some basic equations needed
in the analysis that follows; the details are given by
Fukamachi & Kawamura (1993). The Fourier transforms
of the X-ray polarizability, its real and imaginary
components, which consist of the real and the imaginary
parts of the atomic scattering factors, are written as

�h � �hr � i�hi

� j�hrj exp�i�hr� � ij�hij exp�i�hi� �1�
for a reciprocal-lattice vector h �h � 1=d, where d is the
lattice plane distance). In the two-wave approximation,
in order for the non-trivial solution for the fundamental
equation to exist, the following equation must be satis-
®ed approximately:

��o ÿ i�oi���h ÿ i�oi� � �2
or�h�ÿh=4

� �2
or�h

2�u� i�1ÿ u2�1=2 cos ��=4;

�2�
where

� � �hi ÿ �hr: �3�
Parameters �h and u are de®ned by

�h � �j�hrj2 � j�hij2�1=2 �4�

u � 1ÿ 2q �5�
and
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268 X-RAY STANDING WAVES

q � j�hij2=�h
2: �6�

Equation (2) gives a so-called dispersion surface
which is a hyperbola, as shown in Fig. 1, when there is no
absorption (�0i � 0). The inner hyperbola is denoted as
branch 1 and the outer one as branch 2. The other
parameters in Fig. 1 are the same as in previous works by
Fukamachi & Kawamura (1993) and Fukamachi et al.
(1995).

A parameter W which expresses a deviation from an
exact Bragg condition is given by

W � ÿX sin 2�B=�jcos �1 cos �2j1=2�or�h�: �7�
Only � polarization has been treated; � polarization can
be treated in a similar manner by multiplying jcos 2�Bj
with �hr and �hi.

3. Laue case

Consider a parallel planar crystal with the upper surface
at z � 0 and the bottom one at z � H. In the two-wave
approximation, two branches of the incident beam are
excited when the incident beam E0 exp�ÿ2�iK0 � r�
enters the crystal surface.

By using the boundary conditions at z � 0, we obtain
the re¯ection amplitude

R� j� � ��h=�ÿh��cos �1=cos �2�1=2�W � ig0 � �ÿ1�jL1=2�;
�8�

where R� j� is de®ned by

R� j� � D
� j�
h =D� j�o : �9�

In (8), the parameters L and g0 are given by

L � �W � ig0�2 � �u� i�1ÿ u2�1=2 cos �� �10�
and

g0 � g sin �B cos�=jcos �1 cos �2j1=2 �11�
with

g � g0q1=2 �12�
g0 � �0i=j�hij: �13�

Here

D� j�o � �1� �ÿ1�jÿ1�W � ig0�=L1=2�E0=2 �14�
and

D
� j�
h � �ÿ1�j�E0=2���h=�ÿh��cos �1= cos �2�1=2

� �jL1=2j2 ÿ �W � ig0�2�=L1=2: �15�
The wave ®eld of branch j is expressed as

I� j��r� � jD� j��r�j2
� jD� j�o exp�ÿ2�ik� j�o � r� �D

� j�
h exp�ÿ2�ik

� j�
h � r�j2

� jD� j�o j2 exp�4�k
� j�
oziz��1� jR� j�j2

� 2jR� j�j cos�2�h � rÿ !� j���: �16�
Here !� j� is the phase angle given by

R� j� � jR� j�j exp�i!� j��: �17�

3.1. Symmetric Laue case for q � 0 (�0i 6� 0)

For a multiatomic crystal, the relation q � 0 holds if
�hi � 0 even when �0i 6� 0. For a monoatomic crystal, on
the other hand, �hi � 0 holds only when �0i � 0. In the
following, we assume the former case.

From (8), the re¯ection amplitude R� j� is given by

R� j� � �W � �ÿ1�j�W2 � 1�1=2� exp�i�hr�: �18�
When �hr � �, !�1� is always zero and !�2� is �.

The wave ®eld for W � 0 is

I� j��x� � jD� j��x�j2W�0

� �jE0j2=2� exp�ÿ�z= cos �B�
� �1� �ÿ1�jÿ1 cos�2�x=d��; �19�

where the x axis is taken in the direction of the reci-
procal-lattice vector h and � �� ÿ2��or�0i� is the mean
absorption coef®cient. The last term in equation (19)
expresses a standing wave with the period of the inter-
lattice distance d. When �hr � �, the wave of branch 1
has an antinode at the lattice plane, while the wave of
branch 2 has a node at the lattice plane as shown in the
upper-middle part of Fig. 2. On the other hand, when
�hr � 0, !�1� � � and !�2� � 0 and the situation is
reversed: the wave of branch 1 has a node and that of
branch 2 has an antinode at the lattice plane.

Fig. 1. Schematic diagram of dispersion surface for q � 0 and �hi � 0
(thick solid lines).
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Note that in this case �q � 0� we cannot see the
anomalous absorption and the anomalous transmission,
though the absorption is included.

3.2. Symmetric Laue case for q � 1

R� j� in this case is given by

R� j� � ÿi�W � �ÿ1�j�W2 ÿ 1�1=2� exp�i�hi�; �20�

where we put �hi � �. For W � �1, the phase angles are
the same for branches 1 and 2: !� j� � ÿ�=2 for W � ÿ1
and !� j� � �=2 for W � 1. For ÿ1 < W < 1, the phase
angles are different for branches 1 and 2: tan!�1� �
W=�1ÿW2�1=2 and tan!�2� � ÿW=�1ÿW2�1=2. [Note
that the phase angles alter when �hi � 0: !� j� � �=2
for W � ÿ1, !� j� � ÿ�=2 for W � 1, and tan!�1� �

ÿW=�1ÿW2�1=2 and tan!�2� � W=�1ÿW2�1=2 for
ÿ1 < W < 1.]

The values of the phase angles are shown in the left
half of Table 1 for W � ÿ1, 0 and 1 in the cases of q � 0
and 1. In Table 2, the damping terms exp�4�k

� j�
oziz� in

equation (16) are shown for W � ÿ1, 0 and 1. For
jWj � 1, waves of both branches 1 and 2 suffer the mean
absorption of exp�ÿ�z= cos �B�. At W � 0, a wave of
branch 1 has an absorption coef®cient that is twice the
size of the mean absorption coef®cient (anomalous
absorption), while the wave of branch 2 suffers no
absorption (anomalous transmission). It is well known
that a branch 1 wave �!�1� � 0) has an antinode at a
lattice plane and suffers anomalously strong absorption,
while a branch 2 wave �!�2� � �) has a node at a lattice
plane and suffers anomalous transmission, as pointed
out by Batterman & Cole (1964).

The strengths of the wave ®eld I� j��x�=jE0j2 at point x
near the surface �sz � 10ÿ5) are shown in Fig. 3(a) for
branch 1 and in Fig. 3(d) for branch 2. Here the
parameter s is de®ned as

s � ��orj�hij= cos �B: �21�
Most wave ®elds I� j��x� diverge at jWj � 1 for any value
of sz, as shown in Figs. 3(a)Ð(f ). However, the total
wave ®eld jD�1��x� �D�2��x�j2=jE0j2 does not diverge at
any value of W, as shown in Figs. 3(g)Ð(i). This point
will be discussed in detail in a separate paper.

At a lattice plane �x � 0�, I�1��0�=jE0j2 increases when
W increases from ÿ2 to ÿ1. It diverges at W � ÿ1 and
W � 1. It has a local minimum of 1 at W � 0. At the
middle point between two adjacent planes �x � d=2�,
I�1��d=2� shows similar variation except that it has a local
minimum of 0 at W � 0. At a point x � d=4,
I�1��d=4�=jE0j2 decreases from the maximum to a local
minimum when W changes from ÿ1 to 1, and becomes
1 for large W. At a point x � 3d=4, I�1��3d=4� varies in

Table 1. The phase factor ! for W � ÿ1, 0 and 1 in the symmetric Laue and Bragg cases

Symmetric Laue case Symmetric Bragg case (semi-in®nite)

Branch W � ÿ1 W � 0 W � 1 W � ÿ1 W � 0 W � 1

q � 0 (�hr � �) 1 0 0 0 ÿ� ÿ�=2 0
2 � � �

q � 1 (�hi � �) 1 ÿ�=2 0 �=2 1.288�² � 0.712�²
2 3�=2 � �=2

² Numerically obtained.

Fig. 2. Standing waves in the Laue case.

Table 2. The damping factor of the wave ®eld given by equation (15) at W � ÿ1, 0 and 1 for two branches in the
symmetric Laue case

Change of term exp�4�k
� j�
oziz� for the symmetric Laue case

q � 1, branch W � ÿ1 W � 0 W � 1

1 exp�ÿ�z= cos �B� exp�ÿ2�z= cos �B� exp�ÿ�z= cos �B�
2 exp�ÿ�z= cos �B� 1 exp�ÿ�z= cos �B�



270 X-RAY STANDING WAVES

the opposite way to I�1��d=4�. The variations with
respect to W for branches 1 and 2 are interchanged at
x � 0 and x � d=2: I�1��0;W� � I�2��d=2;ÿW� and
I�2��0;W� � I�1��d=2;ÿW�. The variation of branch 1
at x � d=4 is just the opposite to that of branch 2
at x � 3d=4: I�1��d=4;W� � I�2��3d=4;ÿW� and
I�1��3d=4;W� � I�2��d=4;ÿW�.

In order to determine the relation of these standing
waves to the Borrmann effect, we calculate the strength

of the wave ®eld inside the crystal. The damping term in
(16) is

4�k
� j�
oziz � 2szg �jWj � 1�

2sz�g� �ÿ1�j�1ÿW2�1=2� �jWj < 1�:
�

�22�
The wave ®eld I�1��0;W � 0�, which has the antinode at
the lattice plane, decreases rapidly when sz increases

Fig. 3. Change of wave ®eld I� j��x�=jE0j2 for x � 0 (solid line), d=4 (dashed line), d=2 (dotted line) and 3d=4 (dash-dotted line) in the symmetric
Laue case for q � 1, g0 � ÿ1 and �hi � �. Branch 1: (a) sz � 1� 10ÿ5, (b) sz � 2 and (c) sz � 5. Branch 2: (d) sz � 1� 10ÿ5, (e) sz � 2 and
(f ) sz � 5. Total ®eld: (g) sz � 1� 10ÿ5, (h) sz � 2 and (i) sz � 5. Note that there is no divergence in the total ®eld.
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from 1 � 10ÿ5 to 2 and 5 (Figs. 3a±c) for g0 � ÿ1. The
wave ®eld I�2��d=2, W � 0), on the other hand, does not
change at all as sz increases (Figs. 3d±f ).

4. Bragg case

In the Bragg case for a semi-in®nite crystal, one branch
that gives rise to decreasing intensity into the crystal is
chosen. The amplitude Dh is expressed by

Dh � ��h=�ÿh��cos �1=jcos �2j�1=2

� �ÿ�W � ig0� � B1=2�E0; �23�
where B is given by

B � �W � ig0�2 ÿ �u� i�1ÿ u2�1=2 cos ��: �24�
The wave ®eld of branch j in this case has exactly the
same form as equation (16).

4.1. Symmetric Bragg case for q � 0 (�0i � 0 or �0i 6� 0)

The dispersion surface when q � 0 with �0i 6� 0 in the
symmetric Bragg case is given by

�X cos �B�2 ÿ �Y 02 ÿ Z02� sin2 �B ÿ �2
oi � �2

orj�hrj2=4

�25a�

Y 0Z0 sin2 �B � �oiX cos �B � 0: �25b�
The dispersion surface is depicted in Fig. 4 for g � 0
��0i � 0� and g � ÿ0:1 ��0i 6� 0�. The thick solid and the
thick dashed lines show the real and the imaginary parts,
respectively, of the physically allowed dispersion surface
when g � ÿ0:1. The thin solid and the thin dashed lines
are the real and imaginary parts, respectively, of the

dispersion surface when g � 0 ��0i � 0�. When �0i is not
zero, Y 0 and Z 0 are not zero for jWj � 1, which is quite
different from the dispersion surface when �0i � 0.

The re¯ection coef®cient R is given by

R � ÿfW � ig0 � ��W � ig0�2 ÿ 1�1=2g exp�i�hr� �26�
where we put �hr � �. Note that phase angle ! becomes
ÿ�=2 when W � 0. The phase angles for W � ÿ1, 0 and
1 are given in the right half of Table 1. In the limit of
g � 0 ��0i � 0), the phase angle ! becomes ÿ� for
W � ÿ1 and zero for W � 1. The forms of the standing
wave for these values of W in the case of g � 0 are
shown in the upper part of Fig. 5. When W � ÿ1, the
standing wave has its node at a lattice plane. When
W � 1, on the other hand, the standing wave has its
antinode at a lattice plane. This result is the same as
obtained by Batterman & Cole (1964).

The variations of the wave ®eld I�x�=jE0j2 in the range
ÿ2 < W < 2 are shown in Fig. 6. At a lattice plane x � 0,
I(0) decreases when W changes from negative in®nity to
ÿ1 and shows the minimum at W ' ÿ1. It increases
when W changes from ÿ1 to 1 and shows the maximum
at W ' 1. Then it decreases monotonically. At a plane
x � d=2, I�d=2� shows just the opposite variation to I(0).
At x � d=4, I�d=4� decreases when W changes from ÿ1
to 0, showing the minimum at W � 0, and increases
when W changes from 0 to 1. At x � 3d=4, I�3d=4� shows
just the opposite variation to I�d=4�.

4.2. Symmetric Bragg case for q � 1

When g0 � ÿ1, the equations of the dispersion
surface are given by

Y 0Z0 sin2 �B � ÿ�orj�hijX cos �B=2 �27a�

�Y 0 sin �B�2 ÿ �Z0 sin �B�2 ÿ �X cos �B�2 � 0: �27b�
Since X � Y 0 � Z0 � 0 satis®es (27a) and (27b), two
dispersion surfaces of hyperbola touch each other at
W � 0 where the total re¯ection is observed (Kato,

Fig. 5. Standing waves in the Bragg case.

Fig. 4. Dispersion surface in the symmetric Bragg case for q � 0. The
thick solid and the thick dashed lines show the real and the
imaginary parts, respectively, of the physically allowed dispersion
surface when g � ÿ0:1 (�0i 6� 0); the thin solid and the thin dashed
lines are the real and imaginary parts of the dispersion surface when
g � 0 (�0i � 0).



272 X-RAY STANDING WAVES

1992; Fukamachi & Kawamura, 1993; Fukamachi et al.,
1995). The phase ! varies from 1.288� to � and 0.712�
when W changes fromÿ1 to 0 and 1 (Table 1). The wave
®elds I�x�=jE0j2 at x � 0, d=4, d=2 and 3d=4 are given in
Fig. 7 as a function of W for �hi � �. The wave ®eld I(0)
shows a minimum of 0 at W � 0. On the other hand,
I�d=2� shows a maximum at W � 0. The standing waves
for W � ÿ1, 0 and 1 are shown in the lower part of Fig.
5. The standing wave for W � 0 has a node at a lattice
plane x � 0 and an antinode at the midpoint between
lattice planes x � d=2. This is quite different from a
standing wave in the case of q � 0, which does not have
either a node or an antinode at a lattice plane or at the
midpoint between the planes.

5. Summary

We have studied standing waves from X-ray dynamical
diffraction, especially when the real component of the
X-ray polarizability �hr is zero and the imaginary
component �hi is not zero �q � 1�. We have used the
strength of the electric displacement I� j� � jD� j��r�j2 for
branch j to study the wave ®eld, and analysed the cause
of anomalous absorption and anomalous transmission in
the Laue case by considering the forms of the standing
waves.

In the symmetric Laue case, by tuning X-ray energy
very close to an absorption edge of an atom in a crystal,
we have a condition when �hr 6� 0, �hi � 0 and �0i 6� 0,
i.e. q � 0 in terms of the present parameter. In this case,
the standing wave of branch 1 has an antinode at the
lattice plane and the wave of branch 2 has a node at the
plane. It is noted that, since �hi � 0 ��0i 6� 0�, there is
no anomalous absorption nor an anomalous transmis-

sion effect, which is quite different from the situation
when �hi 6� 0.

When the real component �hr is zero and the
imaginary component �hi is nonzero �q � 1�, the phase
factor !�1� of branch 1 changes from ÿ�=2 to 0 and �=2
by increasing W fromÿ1 to 0 and 1. At W � 0, the wave
of branch 1 has an antinode at the lattice plane and an
absorption coef®cient that is twice the size of the normal
one. In contrast, the phase factor of the wave of branch 2
changes in the opposite way. The wave of branch 2 has a
node at the lattice plane and the wave ®eld does not
decrease, which results in anomalous transmission
effects for both the diffracted and the transmitted
beams.

In the symmetric Bragg case, as is well known, when
q � 0 and �0i � 0, the total re¯ection occurs for
ÿ1 � W � 1. The phase factor ! changes from ÿ� to
ÿ�=2 and 0 when W changes fromÿ1 to 1. When q � 1,
the total re¯ection occurs only at W � 0. The standing
wave in this case has a node at the lattice plane.

X-ray standing waves have been used to determine an
impurity site in a bulk or an adsorbed-atom site on a
crystal surface by measuring ¯uorescent X-rays or
secondary electrons excited by the incident X-rays. Most
of these experiments are performed in a re¯ection mode,
i.e. in the Bragg case when the absorption is weak
(g ' 0) (Zegenhagen, 1993). We have shown that a
similar variation of the standing wave is expected in the
Laue case when the real component of X-ray polariz-
ability, �hr, is zero, with the imaginary part, �hi, nonzero
�q � 1�. Especially at q � 1, the standing wave can be
utilized to determine an impurity site in a bulk because
the transmitted intensity is high due to anomalous
transmission and a thick crystal can be used in the

Fig. 6. Change of the wave ®eld I�x�=jE0j2 for x � 0 (solid line), d=4
(dashed line), d=2 (dotted line) and 3d=4 (dash-dotted line) in the
symmetric Bragg case for q � 0, g � ÿ0:1 and �hr � �.

Fig. 7. Change of the wave ®eld I�x�=jE0j2 for x � 0 (solid line), d=4
(dashed line), d=2 (dotted line) and 3d=4 (dash-dotted line) in the
symmetric Bragg case for q � 1, g0 � ÿ0:1 and �hi � �.
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experiment. The higher transmitted intensity also makes
the measurement easier and more accurate. In addition,
samples of a wider range of thickness can be used in the
experiments, which should be an advantage in preparing
the sample.
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